A soluble guanylate cyclase mediates negative signaling by ammonium on expression of nitrate reductase in Chlamydomonas.

نویسندگان

  • Amaury de Montaigu
  • Emanuel Sanz-Luque
  • Aurora Galván
  • Emilio Fernández
چکیده

Nitrate assimilation in plants and related organisms is a highly regulated and conserved pathway in which the enzyme nitrate reductase (NR) occupies a central position. Although some progress has been made in understanding the regulation of the protein, transcriptional regulation of the NR gene (NIA1) is poorly understood. This work describes a mechanism for the ammonium-mediated repression of NIA1. We report the characterization of a mutant defective in the repression of NIA1 and NR in response to ammonium and show that a gene (CYG56) coding for a nitric oxide (NO)-dependent guanylate cyclase (GC) was interrupted in this mutant. NO donors, cGMP analogs, a phosphodiesterase inhibitor isobutylmethylxanthine (IBMX), and a calcium ionophore (A23187) repress the expression of NIA1 in Chlamydomonas reinhardtii wild-type cells and also repress the expression of other ammonium-sensitive genes. In addition, the GC inhibitors LY83,583 (6-anilino-5,8-quinolinedione) and ODQ (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one) release cells from ammonium repression. Intracellular NO and cGMP levels were increased in the presence of ammonium in wild-type cells. In the cyg56 mutant, NIA1 transcription was less sensitive to NO donors and A23187, but responded like the wild type to IBMX. Results presented here suggest that CYG56 participates in ammonium-mediated NIA1 repression through a pathway that involves NO, cGMP, and calcium and that similar mechanisms might be occurring in plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional genomics of the regulation of the nitrate assimilation pathway in Chlamydomonas.

The existence of mutants at specific steps in a pathway is a valuable tool of functional genomics in an organism. Heterologous integration occurring during transformation with a selectable marker in Chlamydomonas (Chlamydomonas reinhardtii) has been used to generate an ordered mutant library. A strain, having a chimeric construct (pNia1::arylsulfatase gene) as a sensor of the Nia1 gene promoter...

متن کامل

Human soluble guanylate cyclase as a nitric oxide sensor for NO-signalling reveals a novel function of nitrite reductase.

Human soluble guanylate cyclase (hsGC), a NO sensor/NO receptor of a heterodimeric hemoprotein, plays a critical role in the NO-sGC-cGMP signaling pathway, and also reveals a novel nitrite reductase activity. This indicates that hsGC could activate itself by catalytic reduction of nitrite to NO instead of receiving NO from nitric oxide synthase (NOS), which provides valuable insight into the ph...

متن کامل

Localization of Nitrogen-Assimilating Enzymes in the Chloroplast of Chlamydomonas reinhardtii.

The specific activities of nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase were determined in intact protoplasts and intact chloroplasts from Chlamydomonas reinhardtii. After correction for contamination, the data were used to calculate the portion of each enzyme in the algal chloroplast. The chloroplast of C. reinhardtii contained all...

متن کامل

Two different carriers transport both ammonium and methylammonium in Chlamydomonas reinhardtii.

A new methylammonium-resistant mutant strain from Chlamydomonas reinhardtii, henceforth termed 2172 (ma-2), has been isolated. This mutant is affected in a single mendelian gene different from and linked to the ma-1 locus which is defective in the methylammonium-resistant mutant 2170. Both mutations in ma-1 (2170) and ma-2 (2172) are linked to the nit-1 gene coding for the nitrate reductase apo...

متن کامل

Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas.

Positive signaling by nitrate in its assimilation pathway has been studied in Chlamydomonas reinhardtii. Among >34,000 lines generated by plasmid insertion, 10 mutants were unable to activate nitrate reductase (NIA1) gene expression and had a Nit(-) (no growth in nitrate) phenotype. Each of these 10 lines was mutated in the nitrate assimilation-specific regulatory gene NIT2. The complete NIT2 c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 2010